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Abstract--Deposition rates on solid targets cooled far below the dew point of undersaturated, dilute 
binary vapor and hot gas mainstreams have recently been found to be reduced and sharply surface 
temperature dependent compared to their pure vapor deposition counterparts. A rational yet tractable 
theory to account for such observations is formulated and exploited in particular cases of current practical 
interest; e.g. the deposition of trace multiple alkali sulfate vapors present in flowing combustion products. 
Our physicochemical model is based on the formation of a binary solution condensate aerosol near the 
deposition surface, with the resulting droplets collected by the mechanism of thermophoresis. The binary 
vapors, assumed here to be in local equilibrium with the solution aerosol phase, are collected by the 
familiar mechanism of Fick (concentration) diffusion across the prevailing laminar boundary layer (LBL) 
but we do not make the restrictive assumption that the Fick diffusivities are equal to the energy diffusivity 
of the carrier gas. As by-products of our calculation of the total (aerosol + vapor) deposition rate we 
obtain the BL position of condensation onset, as well as the structure of the LBL on either side of this 
binary "fog-locus". Illustrative predictions are shown for the effects of Na2SO4(g) addition on salt 
deposition rates from combustion product streams containing a fixed amount of K2SO4(g), on the 
assumption that the resulting Na2SO4 + K2SO4 droplets form nearly ideal solutions, having droplet 
thermophoretic diffusivities within two decades of the host gas momentum diffusivity, v. With systematic 
corrections for the effects of (a) alkali salt vapor dissociation/equilibrium chemical reaction with the 
hydrocarbon combustion products and (b) slight solution non-ideality, the present theoretical formalism 
should be useful in accounting for binary nucleation onset effects observed in recent deposition rate 
experiments using alkali-seeded atmospheric pressure flat flames. 
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1. I N T R O D U C T I O N - - M O T I V A T I O N  

It is wel l -known that  vapor  mixtures  capab le  o f  forming  so lu t ion  condensa tes  will fo rm aerosols  
under  cond i t ions  such tha t  ei ther  cons t i tuent  v a p o r  would  i tself  be undersa tu ra ted .  F o r  this reason  
we expect  tha t  the depos i t ion  rate  o f  mul t ip le  salts  f rom flowing combus t ion  gases will be influenced 
by the fo rma t ion  o f  so lu t ion  condensa te  aerosols  near  the depos i t ion  surface when the surface is 
sufficiently far be low the mul t ip le  salt  dew poin t  t empera ture .  To ant ic ipa te  such results  and  guide 
the design o f  exper iments  and  p resen ta t ion  o f  the results o f  such exper iments  (current ly  unde rway  
in this l abora to ry ;  Liang et al. 1988) we have deve loped  the theory  out l ined  here,  and  i l lus t ra ted 
it for air(-l ike) s t reams con ta in ing  di lute  a m o u n t s  o f  K2SO4(g )+  Na2SO4(g). Depos i t i on  f rom 
m u l t i c o m p o n e n t  salt  systems o f  this type is o f  cons iderab le  interest  in a n u m b e r  o f  energy 
convers ion  and  mate r ia l s  process ing technologies .  In  par t i cu la r ,  sea-sal t  ingested into a i rcraf t ,  o r  
mar ine ,  combus t ion  turb ines  form such mul t i sa l t  a lkal i  sulfate v a p o r  mixtures  which, in turn,  lead 
to corros ive  condensa te  layers  on the tu rb ine  blades  (e.g. Rosne r  et al. 1979). Similar ly,  the p roduc t s  
o f  coal  combus t i on  con ta in  mul t ip le  condens ib le  vapors  capab le  o f  fo rming  so lu t ion  condensa te  
aeroso l  d rop le t s  in the vicinity of, say, heat  exchanger  surfaces. These app l i ca t ions  have mo t iva t ed  
the extensions  descr ibed  here o f  our  ear l ier  depos i t ion  rate  theories  (Rosne r  et aL 1979; Cast i l lo  
& Rosne r  1988a). The  first o f  these papers  was confined to the l imit ing case [hereafter  cal led " f rozen  
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boundary layer" (FBL)] of condensation only at the deposition surface itself. The second paper, 
which also considered equilibrium BL condensation but only for unary vapors, set the stage for 
the present extension. 

1. I. Outline 

In this paper we present a realistic but tractable theory of the deposition behavior of 
multicomponent dilute condensible vapor mixtures flowing near cold solid surfaces. We account 
for the possible condensation of these vapors within the thermal BL leading to the formation of 
multicomponent droplets which are then driven toward the cold surface by the local temperature 
gradient force (thermophoresis). The system is sketched in figure 1, the gas is undersaturated far 
from the cooled wall (l~b region) and the vapors condense within the thermal BL forming a 
condensated mist in local thermal equilibrium with the vapors (2~b region). The deposition rate on 
the wall is given by the diffusion flux of the vapors to the wall plus the deposition of condensate 
droplets driven by thermophoresis. The simplifying assumptions which underlie our theoretical 
model, and the associated equations are first developed in section 2. In section 3, we apply our 
mathematical model to a binary mixture of condensible vapors in steady laminar "wedge" flow of 
carrier gas, and the associated ordinary differential equations are obtained. In section 4, we then 
develop solutions to these equations; first for the degenerate case of no vapor condensation inside 
the BL (i.e. dispersed condensate not present) and then for the more interesting case in which local 
condensation occurs and equilibrium exists between the condensed droplets and the surrounding 
vapor. Representative results for binary mixtures of K2SO 4 and Na2SO4 vapors dilute in high 
temperature air at atmospheric pressure are given in section 5. While illustrated here for the case 
of dilute binary vapors forming ideal solution droplets, the present deposition rate formulation is 
readily extended to multicomponent non-ideal systems of interest in many energy conversion--and 
materials processing--technologies. 

2. MODEL FOR MULTICOMPONENT VAPORS 

2.1. Underlying Assumptions and Validity Criteria 

To obtain a tractable mathematical model for this apparently complex physical system the 
following simplifying assumptions will be adopted: 

A.1. The amount of condensible vapor is very small with respect to the non- 
condensible (carrier) gas. Accordingly, the mixture velocity and temperature 
fields are not affected by the different processes (condensation, deposition) 
occurring in the relatively small amount of vapor. 

A.2. The vapors behave as ideal gases at the low (partial) pressures considered. 
A.3. The liquid mixtures (dispersed droplets or continuous liquid layers) formed by 

the different condensible components in the gas, behave as ideal solutions. Thus 
the partial molar volume of each component in solution is equal to its 
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Figure 1. Schematic of the structure of the LBL near the deposition surface showing the inner zone of 
two-phase (aerosol condensate) flow; the primary condensate deposition mechanism is thermophoresis 

toward the cooled surface. 
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pure-component molar volume at the same temperature and pressure. This 
assumption is valid when the liquid components have similar molecular sizes 
and chemical character. 

A.4. Whenever liquid and vapors co-exist, they are in local thermodynamical 
equilibrium (LTE); i.e. the residence time is much larger than the required time 
for such a two-phase system to reach LTE. By adopting this LTE approxi- 
mation we free ourselves of the need to speculate about the kinetics of 
condensation or nucleation; i.e. we consider the local nucleation rate to be large 
compared to the dynamic process. For a discussion of this point, see appendix 
C and Castillo & Rosner (1988b). Furthermore, the equilibrium vapor pressure 
over a small liquid droplet will be taken to be the same as over a flat 
liquid layer with the same temperature and composition (i.e. the Kelvin 
effect will be neglected). In another paper (Castillo & Rosner 1988b) we 
have shown that, for alkaline-type vapors, the Kelvin effect is negligible 
for droplet radius >0.1/~m. Accordingly, we need not be concerned with the 
size (or number density) of droplets in the two-phase region, but rather only 
with the total amount of condensible material in each phase (vapor and 
droplets). 

A.5. We restrict ourselves to steady laminar flows and make the usual high Reynolds 
number BL approximations. Self-similarity will be assumed for the boundary 
conditions of interest here. 

A.6. The thermodynamic properties of the gas (viscosity, thermal diffusivity etc.) 
will be considered approximately constant and equal to the values for the 
carrier gas evaluated at mainstream conditions. Also, the transport properties 
for vapor (Fick diffusion coefficients) and droplets (thermophoretic coefficient) 
will be taken to be constant. Finally, the total mixture density will be taken 
as a known constant, value, P~.t 

A.7. Multicomponent and thermal (Soret) diffusion effects will be neglected for 
the vapors. Thus, the difference between the carrier gas and each vapor velocity 
is only due to the diffusion flux of the vapor down its own concentration 
gradient. 

A.8. The droplets do not appreciably Brownian diffuse and the difference between 
the carrier gas and the droplet velocities is due only to a thermophoretic drift 
velocity, VT, of the droplets, v T will be taken at each position as that 
corresponding to an isolated droplet in a uniform gas flow with the same 
temperature gradient. 

A.9. The liquid deposit behaves as if it were motionless. Thus, the boundary 
condition (BC) for the gas at the macroscopic liquid surface will be taken to 
be the same as the BC on a corresponding rigid surface, and the deposit 
composition is governed by the local deposition fluxes. For very thin liquid 
layers (e.g. in the earliest stages of deposition) this approximation is expected 
to be adequate (cf. Rosner et al. 1983). 

2.2. Vapor/Liquid Equilibrium 

Wherever the vapors are in contact with the liquid phase we assume (A.4) they are in LTE. Here 
we develop the consequences of LTE when ideality can be assumed in both the vapor and liquid 
phases. For a more extensive treatment of this general topic, see, for example, Prausnitz et al. (1967) 
and Smith & Van Ness (1975). 

t G r k o ~ l u  & Rosner  (1984) compared numerical results for heat and mass  transfer in LBLs with an without property 
variations for vapors in air and proposed a simple correlation scheme. They showed that, in general, for the range 
0.25 ~< TwIT e ~< 4 and for Lewis numbers  (D/c~ h < 1) (as in our case), the results for mass  transfer considering constant  
properties differ no more than 18% from the results using actual property variations. In particular, for K2SO4 vapors 
in air, the difference was < 10% for the same range of  temperature ratios. Thus,  even for the lower values o f  T w / T  e 
we have considered, the error we are making in the present analysis is acceptably small. 
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Under assumptions A.2 and A.3, we have 

PV, i 
x,  = - - .  [1] 

p :~ ,  

That is, at equilibrium, the mole fraction of component, i, in the solution, x,, is equal to the ratio 
of the vapor pressure of  i over the prevailing solution to the equilibrium vapor pressure of i over 
pure liquidt i at the same temperature. 

Instead of working with partial vapor pressures it will be more convenient to deal with the vapor 
m a s s  f r a c t i o n ,  o)v.~ = Pv.~/P, simply related to the vapor pressure for ideal gases through 

o0v.,= p"  . [21 

In the same way we can define an equ i l i b r ium  m a s s  f r a c t i o n ,  eq ~o v,,, as the vapor mass fraction over 
a pure liquid i at the same temperature by 

eq = - -  

p \ RT / [3] 

which, once the density p is specified, is only a function of T. Then [1] can be written as 

C°v'i i = 1 . . . .  N, [4] 
X i  - -  ¢t) eq ' 

- - v , t  

which is the equilibrium condition used in the following calculations. 
Note that, due to the relation E& = 1, if we define 

oq [51 S -~ i~=l peqi i= 100v. i 

then s is a measure of the degree of vapor phase saturation. When s < 1, the liquid cannot exist 
in equilibrium with the vapors. Thus, using assumption A.4, in general, we can divide the real space 
in two different regions (see figure 1): a single-phase region (no liquid droplets) in which s < 1; and 
a two-phase region (liquid droplets present) in equilibrium with the vapors, i.e. s = 1 everywhere 
and [4] is fulfilled for each component. 

2.3.  D r o p l e t  T h e r m o p h o r e s i s  

Thermophoresis is the phenomena of  particle drift down a temperature gradient (analogous 
to the Soret effect in the diffusion of solute molecules through non-isothermal solutions). It is a 
rarified flow phenomena wherein small particles, suspended in a gas in which there exists a local 
temperature gradient, grad T, experience a force in the direction of - g r a d  T (e.g. Fuchs 1964; 
Talbot 1981). 

Thermophoretic transport can be described in terms of the difference, vT, between the particle 
and gas velocities, in an infinite gas with a uniform temperature gradient, once dynamical 
equilibrium is reached (i.e. when the local thermophoretic force is balanced by the local drag force). 
For particles whose radius is smaller than the mean-free-path of  the gas molecues, vv is normally 
written as 

but Darop is formally included here only to emphasize the similarity between [6] and the ordinary 
diffusion velocity. Actually, the value of ~TDdrop does not really depend on Ddrop (which, in fact, 
we have asymptotically taken as equal to zero, according to assumption A.8). Rather, it is droplet 
size independent and proportional to the gas momentum diffusivity vG; being ~ 0.54 va (Talbot 
1981, [16], p. 476) in the limit we are considering. 

tThe pure liquid i at this temperature need not really exist. In such cases the concept of a hypothetical liquid should be 
used with the value of p~ computed by extrapolation from the real liquid region. 
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According to assumption A.8, we consider v¢ = vG + VT, with VT given by [6], neglecting in this 
way particle inertia [i.e. considering the Stokes number for a particle to be very small; cf., for 
example, Fernandez de la Mora & Rosner (1982) and Rosner (1986)]. 

2.4• Conservation Equations for the Vapor and Condensate Mass Fractions 

We consider a system in which there is an inert carrier gas (density P~.~t), N condensible vapors 
(densities p~,~, i = 1 . . . .  N) and these same chemical substances in the condensate phase (densities 
p¢.~) in the form of  liquid droplets. The governing conservation (balance) equations for these 
densities are 

(~Pinert 
- -  "1- div-(-PinertVinert~ = 0 ,  [7] 

Ot 

~pv, i . . . .  
c~t + div{-p~,yv,~) = - r i  [8] 

and 

Opv., + div{-p¢ iv¢-)= i;", [9] 
dt 

where i~" denotes the local (mass) condensation rate; i.e. the mass of vapor i being transformed 
into condensate i per unit time and volume. 

Defining the total densities PG = Pi,,~t + Z p,.~ and p = PG + E pc.i one finds 
N 

c~P6 + divxCpGVG -} = -- ~ i~" [10] 
Ot i = 1  

and 

O---P-P + div{-pv-)- = 0. [11] 
Ot 

Since the vapor mass fractions are defined with respect to the gas density, ogv,~ -- Pv.~/P6 will have 
to satisfy the following PDE: 

~ 0 ) v  i N 
Pc - - ~  + pGVG" grad co~,~ = div~CpGD~,~ grad cov,,ff - t:~" + Ogv.~ ~ t:~", [12] 

j = l  

where we have used assumption A.7; i.e. the difference beween v~.; and VG is the diffusion velocity 
of  vapor i and therefore, 

Pv, i(Vv, i - -  VG) = Pv, iVdiff, i = J~iff, i = - - D v ,  iPG grad o9~,;. [13] 

Similarly, since condensate mass fractions are defined with respect to the gas, o9~.~- P~,~/Pc must 
satisfy the following PDE: 

u 
PG ~ O9c., + PG(VG + Vt) 'grad co~.~ = -o)~.i div~pGVT) + P:;" + COo., ~ I:)", [14] 

j = l  

where we have used assumption A.8; i.e. the condensate velocity v c differs from the gas velocity 
by the thermophoretic velocity VT, 

V¢ = Vc + VT. [15] 

For very dilute systems (co~,~<~ 1, coc, i,~ 1) (cf. assumption A.1) we can take Pinert'~pG~p, 
Vm,rt ~ VG ~ V. Considering the gas to be incompressible and invoking constant diffusion coefficients 
(assumption A.6), PDEs [12] and [14] reduce to 

~O)v,i . - -  " . 1  
Ot + v'gradc°v'i= Dv'idiv~gradc°v'i-) ri 

P 

and 
• t i t  

~(-Oc, i r i 
O---t- + (v + vt ) .grad ~o c i = -o~¢ idiv v r + - - ,  , , p 

[16] 

[17] 
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where we have neglected the third r.h.s, terms in [12] and [14] with respect to the second r.h.s. 
terms due to the fact that o9~,~,~ 1 and coc, i<~ 1. Equations [16] and [17], together with the 
equilibrium conditions [4] (which allow us to compute t:~"), determine the composition of  the 
system. 

On the other hand, [11] reduces to the usual local incompressibility condition 

div v = 0. [18] 

2.5. Conditions Across the "Interface" Between Single-phase and Two-phase Regions 

Across the "surface" separating the two spatial regions mentioned in the title, the mass flux of  
each component must be continuous. Thus, if n denotes the unit vector normal to this hypothetical 
surface (pointing, say, towards the single-phase region) this condition can be expressed as 

a "(pv, iVv, i+  pc.iVc,~) 2. = (pv,~Vv,~)~'a, i = 1 . . . . .  N. [19] 

Since, in a steady state, it can be shown that Pc,~ is equal to zero at this surface (only 
when vc'n = 0, p2~ could be different from zero, but this is not our case), it follows from [13] 
that 

n" (pv.iv - Dv,~p grad ( D v , / )  2~ : n" (pv/V - D~,i p grad co~,~) l~. [20] 

However, under assumption A. 1, p and v are continuous, and so is p~,i (otherwise va~er,~ would be 
infinite), thus we obtain: 

(n.grad o9~,i) 2~ = (n.grad o9~.i) t~, i = 1 . . . . .  N. [21] 

Relation [21] for each component allows us to connect the solutions in the two-phase 
(2~b) region with the solution in the adjacent single-phase (l~b) region. Note that n.gradogc,~ 
and n.grad(n.grad co~,~) are discontinuous across the l~b/2~b interface due to the discontinuity 
of :~". 

2.6. Vapor and Particle Fluxes at the Waft 

When a cooler solid surface, held at a constant temperature, Tw, is introduced into the gas flow, 
momentum and thermal BLs are generated accommodating the system to the BCs at the wall. Also, 
a diffusion BL will appear around the body and vapors will deposit on its surface if its temperature 
is below the dew point temperature. Under these circumstances, if nw denotes the unit vector normal 
to the wall pointing into the gas phase, the flux of vapor i to this wall will be 

J~,, ,; w = -- Pv, ,v~,," nw. [221 

On the other hand, if the surface temperature is sufficiently low a two-phase region will appear 
adjacent to the body and its droplets will deposit in such a way that 

J~,,:w = -Pc.ivc,,' nw • [23] 

Taking into account the dynamic BC at the solid wall (nw'V = 0), together with [13] and [15], these 
fluxes become 

and 

J'~'.i:w = D~,ipnw'(grad COv,~) w [ 2 4 ]  

/ 'c'.,~ w = - paJc,,; wvT, w" nw.  [ 2 5 ]  

Under assumption A.4 the liquid deposit is at equilibrium with the vapors, so from [4]: 

cov, i;w _ [26] 
og~q,4 Tw-) Xi, dcp. 

Using assumption A.9, the deposit composition is governed by the deposition fluxes, i.e. 

x,, d,p -- J v,,; WMv +J, c.,;w J~.j;~Mv, +j c,j;w)/ . [27] 
. j = l  , 
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The droplets arriving at the wall are also in equilibrium with the prevailing vapors. Then 

co¢,i; w c,j;w = ¢n~'/;w [28] 
eq xi, a,op;w =- M~ i ¢Ov, i4~ Tw~ j = l  

i.e. the droplets at the wall have the same composition as the macroscopic liquid deposit. Using 
this relation in [25] and [27] we obtain 

• vt N " - I  
t-Dr, i; w J v,i;w [ ~-~ Jv,j;wX~ 
eq - z., - -  , i - 1 . . . . .  N, [29] 

oov./cTw-) Mv.i \j=, M~,jJ 

with j'v'.~;w given by [24]. 
Equation [29] together with [24] and [25] are not only useful as BCs at the wall, they also 

determine the deposition fluxes onto the wall. Note that all the variables could depend on the 
position along the deposition surface. 

2. 7. Minimum Wall Temperature for Nucleation Onset 

According to assumption A.4, the deposit, if it exists (i.e. if the wall temperature is lower than 
the corresponding dew point temperature) is at equilibrium with the vapors, therefore s = 1 at the 
wall. If the wall temperature is not too low, the wall is the only position at which liquid could exist; 
i.e. s = 1 only at the wall and s < 1 everywhere else (nw" grad s < 0). In this case, there are no 
droplets in the BL at all (coo. ~ = 0 and cb~" = 0, everywhere) and the deposition is due only to vapor 
diffusion, and is given by [24]. 

On the other hand, if the wall temperature is sufficiently low, a two-phase region appears 
adjacent to the body. In this region, droplets and vapors co-exist at equilibrium; i.e. s = 1 
everywhere inside this two-phase region (nw" grad s = 0). Droplets also deposit on the surface and 
the total deposition rate is given by [24] and [25]. Therefore, it is clear that the boundary between 
both two types of behavior corresponds to the case in which there are no droplets within the 
BL but 

nw'(grad s)w = 0, [30] 

with the deposition rate still given by [24]. That is, the "interface" between the single-phase and 
the two-phase regions lies just at the wall. With a further decrease in Tw this "interface" detaches 
from the wall and moves away from it, expanding the two-phase region as Tw decreases. The same 
phenomenon (growth in extent of the two-phase region) can be achieved at constant wall 
temperature by increasing the amount of condensible vapors in the mainstream. 

3. SELF-SIMILAR FORM OF BALANCE EQUATIONS FOR BINARY VAPORS 
IN LAMINAR WEDGE FLOWS 

3.1. Host (Carrier Gas)Flow-field 

The potential flow (external solutions) which corresponds to the inviscid, incompressible fluid 
flow past a wedge (figure 2) with included angle nfl is given by 

u o ~ x ~  = a x  m, [31] 

where a is a constant and fl = 2m/(m + 1). Two-dimensional stagnation flow, as well as the laminar 
BL on a flat plate at zero incidence, constitute particular cases of wedge flow--the former for fl = 1 
(i.e. m = 1) and the latter for fl = 0 (i.e. m = 0). Moreover, the case fl = l/2(m --- 1/3) can easily 
be transformed into the rotationally symmetrical stagnation point flow (Schlichting 1968, p. 150) 
if we put r/(wedge)= r/(rot, symm.) x/~. 
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..~.x 

Figure 2. Steady incompressible viscous fluid flow past a cooled, solid wedge of  opening angle nil; 
Re l~/2 >> 1. 

and 

As in any two-dimensional motion, the BL equations are given by 

au du due O2u 
u ~ + V ~y = Ue ~x  + V--Oy 2 [32] 

du ~v 
c~x + ~ = 0 [331 

and BCs: u = v = 0 at y = 0 and u = u¢(x-)- at y = m. The similarity variable r/which leads to the 
ODEs is 

y I'Uexcx-)-x'~ li2 [ 'ax"-I"~llZ 

r # - = x ' t v  ) = y t v  ) . [34] 

The equation of local mass conservation, [33], is satisfied automatically by introducing a stream 
function, given by 

i~ ~Cx, y_) = (va )ii2x(,,, + 1)/2 . f (rl_}. [351 

Thus, the fluid velocity components become 

0q, 
u = -~y = ax"f ' (r t - ) -  = uj '£rl-)-  [36] 

and 

f m - 1 ,) - c ~  m + 1 ( v a x " -  1). + v =  ~---~= 2 ~--~--~rtf , [37] 

where primes denote differentiation with respect to q. Introducing these values into the x- 
momentum equation [32] and dividing by a2x ~2"- 1), we obtain the following well-known (Blasius, 
Falkner-Skan) ODE for f(-r/-): 

with BCs: 

and 

f , ,  m + 1 ,, + ~ . f f  + rn[1 - or ' )  2] = 0 [381 

@ r/ = ~ ,  f ' =  1. [401 

@ r / = 0 ,  f = f ' = 0  [391 
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3.2. Temperature Field 

In a steady state, using BL approximations (assumption A.5), and assumptions A.I? and A.6, 
the PDE which governs the fluid mixture temperature distribution is 

OT OT OaT 
U~x + V-~y = ah" 0y 2 , [41] 

~th being the thermal diffusivity. 
We seek a "similar" solution of  the form T(:x, y-} = T~/-}; thus, when the wall temperature is 

held constant and equal to Tw, we postulate 

T = Tw + (T~ - Tw)'O-~q-)-, [42] 

with To~ being the temperature at the mainstream, far from the wall. Accordingly, the BC on 0 
can be expressed as 

0{43-)=0 and 0(-oo-}=l. [43] 

Using [34], [36], [37] and [42] in [41] we find that 0{-q-) must satisfy the following well-known 
(Polhausen) ODE: 

O. m + l  , + ~ .  PrfO = O, [44] 

where Pr is the Prandtl number (v/~h) of  the gas mixture. The solution of  [44] with BCs [43] may 
be written (e.g. Spalding & Evans 1961) as 

fo[ f: l 1 " m + 1 Pr. f ~ d ~  d~o OxCq -) = ~ "  exp 

with 

m + l  "~ 6T---- ff exp[ 2 Pr'J0 f~) d~] dq'" 

[45] 

[46] 

For a description of the computation of  6T see the end of  section 4.1. 

3.3. Mass Fraction Equations and the Prediction of  Deposition Rate 

Assuming COv, i = COy.iTch/-) and using [34], [36] and [37] in [16], together with the BL approximation 
(A.5), we find that each vapor mass fraction must satisfy the second-order ODE 

d2ov, i m + 1 dco v 
+ ~ Sc~ f ' -~q ' "  = Sci" o)i", [47] 

dr/2 

where Sci - v/Dv,~ is the Schmidt number for vapor i and 

:~"~x, y )  ~7'~x, y:} 
~7' lCq-~ =-- p U e ~ X ~  "X = pax,~---------- y .  [48] 

Using the same relation in [17] and taking into account [6] we find that the condensate mass fraction 
must satisfy the first-order ODE 

dc°c i [49] A ~ + Bo9¢, i = -69~", 

?It is easily shown that the effect of the latent heat of phase change can be neglected when (o~v~- my.w)~ (Gth/Dv) t/3 
{[Mvcp(T~ - Tw)]/A}. In our calculations the r.h.s, is of the order of unity, whereas the l.h.s. ~ 10 -3. Therefore, the 
required inequality holds. 

MF I5 I~ 
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where 

and 

m + l  ct dT 
A~t/-}- 2 " f + ? ' d  m_. [501 

fdV 1 
s ~ , ~  = ~ Ld.~ ~ \ ~ j  J [51] 

0t ---- ~ T D d r ° p  [52] 
V 

In the two-phase region, the equilibrium conditions [4] for a binary system transform to 

COy, , _ co~,, [ 5 3 ]  

CO evq I COc, I -4- rmcoc, 2 

and 

O)v, 1 ('Ov, 2 
co~,q, + ~co~.2 = 1, [54] 

where r m is the molecular weight ratio Mv.~/Mv.2. Equations [47] and [49] together with [53] and 
[54] determine the vapor and condensate distributions of the two species, as well as the values of 
a)~" (i = 1, 2). 

Using [34] in [24] the local mass deposition rate of vapor i at the wall (x = 0, i.e. q = 0) will be 

'(avx m l)l/2(dcov'i~ [ 5 5 ]  P 
J'~'i:w(-X-}= Sc, ' ~-- \ dr/ ,/1,=0' 

Note that although the deposition rate depends on x under the present conditions the composition 
of the depositing vapors is the same over the entire surface. The ratioj'~' i;w/J'v'.2;w does not depend 
on x. If  there are also droplets, the mass deposition of component i in droplet form, from [25], 
taking into account [6], [42] and [45], will be 

j, ,  wxCX} = n°t Too - Tw (avx"-  ')'/2co~.;0 l = 0}. [56] 
T . , 0 T  

We can define a convenient non-dimensional average deposition rate over a length L measured 
along x from the stagnation point, by 

re+l__ I L ,, 
i v . , -  2p (avLm+')-1/2" jv.~;w'~x-)'dx [571 

do 

and a similar expression for J~,~. Under the present conditions, 

1 dco~, i [581 

J~ '~=Sc i  dq ,=0 

and 

Too - T w 
Jc.~ = Tw6T ~coc.,'~q = 0-)-. [59] 

Furthermore, the equilibrium between the liquid deposit and the vapor, [29] can be written in the 
form 

co~,l:w = J~., [60] 
©q coy. i ~Tw-~ Jr., + rmj,.2 

and 

fDv. kw O)v, 2; w } - - =  1. [61] eq cov.,(-rw~ co~2fTw~ 
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The total non-dimensional mass deposition rate (droplet form + vapor flux) of substance i 
will be 

J ,  = J~,~ + J~.i. [62] 

Note that [61] is only necessary when there are no droplets (¢o~.~ = 0); i.e. the two-phase region does 
not exist. Otherwise, this condition is a particular case of [54] applied at the wall. 

4. ANALYTICAL AND NUMERICAL METHODS 

4.1. "Frozen" Boundary Layer (FBL) 
When there is no droplet formation within the BL, oh;" = 0 and o)~.~ = 0, the solution of [47] can 

be written in the form 

co~.~ = cG,~; w + (co~.~;~¢ - COv./;w).Fi{-q,O-), i = 1, 2, [63] 

where 

and 

, ;0 i m+' Sc, ,64, Fi(-r/,~b) = &,xC~b_) ." exp 2 

f~ [ rn+l Sc~.f~f~:~)d~]dqg. [65] &A~b} = exp 2 

Therefore, the non-dimensional deposition rate of vapor i, given by [58], becomes 

J~,i - O)v, i;~ - tav, i: w [66] 
Sci" ~ i ~ - )  

These two equations (for i = 1 and 2), together with the equilibrium conditions [60] and [61], form 
an algebraic system of four equations with four unknowns (Jv,~, ogv.i:w) which can be solved once 
ogv.i::~ , ~eqixeTw-)- , Sci, r m and 6i{-0-) are known. 

From [36],f'  = u/ue a n d f '  ~ 1 when 11 -~ oo. In practice, f '  reaches a value sufficiently near unity 
for a finite value of r/. Thus, suppose, in general, 

f = r / -  b for ~/>~ v/~, [67] 

b being a constant. Then from its definition, [65] we obtain 

"~ m+lsc, fffld)d~l.d~ 
5,{4~ = f0 exp[ 2 

+ e x P [ T  Sci(r/oo - b) exp Sci- f{-~-) d~ 

{ i  n 1-],/2_ f ~ - b  [ m + I Sc .¢21d~} " - -  [68] 
x (rn + 1) 5~iA exp 4 

This equation is also valid for 6T just changing Sci to Pr; see [46]. 
We have computed the value of 6g{-0-} and 6T using Simpson's algorithm. The necessary values 

of f {-r/) were obtained using Taylor's expansion, employing the values of f ,  f', f" a n d f "  at given 
v/-values. The quant i t ies f , f '  and f "  are tabulated (e.g. Schlichting 1968, table 7.1, p. 129) for m = 0 
(in this case, v/~ = 7.8; b = 1.72077) and (Schlichting 1968, table 5.1, p. 90) for m = 0 (r/~ = 3.8; 
b = 0.6482) and m = 1/3 (r/~ = 5.6; b = 0.9855), in this last case taking into account the different 
non-dimensionalization, r/ (here)= w/3ff (Schlichting) and f (here)= ~//3~b (Schlichting) and the 
value o f f "  obtained from [38]. Moreover, values of [68] for some specified values of m and Scg 
can be found in Evans (1961, table 3, p. 33). It should be noted that due to the different similarity 
variable used, 6~{-0)= [2/m + I]1/2 × (Evans' tabulated value) -t, and fl =2m/(m + 1). We have 
used Evans' table to check our computer program, obtaining perfect agreement for the values of 
the Euler parameter m (0, l and 1/3) of principal interest here. 
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4.2. Condensation Within the Boundary Layer  

Let us assume a two-phase region exists adjacent to the wall in which there are droplets at local 
equilibrium with the vapors extending into the BL until a position given by r# = r#., i.e. the 
"interface" between the single-phase and the two-phase region is located at r#.. Then, for q 1> q,, 
the solution of [47] with chi" = 0, is 

( i  = 1, 2 
¢'Ov'i = OOv'i;n W (Ogv'i;*c -- OJv'i'n)" F ~r#' r#n-)" '~(r# ~ r#n [69] 

with F/or#, r#.-) given by [64] and co..~:n - co~,~{-r#.-y. 
For r# ~< r#., although the solution could be expressed in the form of quadratures (see appendix 

B), it is better to transform the system given by [47], [49], [53] and [54] to a system of ODEs for 
x~ = co~.~/Co~vq~ and co¢,~. After some manipulations, we obtain 

[ ( 1 )  , ~ j ,  .~.~ 2 ,..l_ [( ,~ 1 f rmSCl ~'~ .~.~ ...l,. T Sc i foj evq i ) 
og:q~+ ~ - 1  ~ Sczc°:ql-] dzx' 1 1 ~ Sc, .(2do~: ?, m + l  

dogevq2 m + 1 . co<.lSc2~ dxl 
+ 2 ~ + ~ - - -  Sc~foJ~vq2 + A ~ /  

X lrm J dr# 

[- Sc2 / d  co~,l m + 1 dco~ql\ ,~2,,,~q eq +(l_xi)Lr_~.t~+~Scif~) ,~,~',,2dr/z m+12 Sc2f' =0 

and 

Scz ( 1 ) S c , ]  d~oe,, )'F Scz ( 1 ) .  S c i l ~  Sc2 dx,}  
rmOJevq2 ~-~1-- 1 +~-~qlj'A '--~-q +(Lrm~O:?2kx,- 1 + ~--747.:."./nv,lj --A ~l'm~'~'v,2v2 .... .  q dr# ('OC. 1 

[701 

dx, F 2 d~evql 2 dog~,q2 m + 1 ] +d-~,L~?, ~' ~2 ~ +~--f(Sc,-Sc:) 

xl Vd2~, q' m + 1 dco~,] I - x ,  Fd2¢o~72 m + 1 . . . .  dcoevq2] 
+o~:~q~L-~-~-,~ +--5 -sc,f~r#-) dr# [71] 

with to~vqi being a function of r# through its temperature dependence; i.e. 

1 p~qi4rT~Mv,~ 
eq __ [72] (,Ov, i - -  p R T  

and the functions A(-r#-) and B(-r#-) are given by [50] and [51], respectively. 
On the other hand, the continuity of mass flux of each component  across the "interface", [21] 

becomes 

dogv.i t~ _ doJ~.~ :~ [73] 
dr# ,. dr# ,." 

Using [69] for computing the value at the single-phase region, we get, at r# = r/a: 

[- COv.,:~ cov.::~-to:q2 1 d~o:q2].[- 1 dco~v.ql 1 dw:~ 1 
x,  = + d~' " I j  L~°2 q, dr# O)v. 2eq dr# + 

and 

[74] 

d eq X l  dogv, leq -x___2 = cov,~:~ - cov, lx~ @ r# =~#.. [75] 
dr# co~,,ql61scq_) ~ov, leq dr/ 
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Also, from their definitions, 

and 

and, as stated earlier, 

09~.,;. = Xtr.O~, @ r/ = r/,, [76] 

or,2;. = (1 -- Xl)0.kev.q2 @ r/ = r/n, [77] 

o9¢,,{-r/,-) = 0. [78] 

The deposition rates of vapors and droplets, [58] and [59], become 

1 eq dx, dco ~q, -] [79] 
J ~ ' l = ~ c  l" c°~'l-d~q + x l  dr/ ].=o' 

1 [ d(.~ ~2 dxl-1 
Jv. = (1 - [8ol 

T ~ - T w  
~¢,1-- Tw6--------- ~ ~(..Oc, l'(-r/ = 0-')" [81] 

and 

J¢,2-T°~-Tw °t [ 1-xl ] 
• • o9¢ I [82] Twfr L X l r m  ' 7 =0. 

The total deposition rate is given by 

= Jr., + J¢,,. [831 

Finally, the equilibrium between the liquid deposit and the vapors, [60], can be written as 

iv, t + rmJv, z = Xl,w. [84] 

The minimum wall temperature for nucleation onset (Tw,.) corresponds to the case r/. = 0 (cf. 
section 2.7). That is, imposing ds/dr/= 0 at r /=  0 and using the equations of  section 4.1, for 
Tw = Tw,., we find: 

°q or,  l:w Sc2 Jr,2 • [85] d 0.,) ~ I rm j f  2(.Dv,2;w £ ((Dev,ql~ eq 
Sct Acv, 1 

= dr/ 7=o f~.iYr--m--)-~,~dr/\°~:?Ul.=0 o:q2;w 

Therefore, Tw,, corresponds to the case when the deposition values Jv.t given by [66] also satisfy 
[85]. For Tw < Tw,,, a two-phase region exists near the wall and corresponding deposition rates 
should be computed using the equations presented in this section. 

In this paper we have provided illustrative results only for the values of  the Euler parameter 
m = 0, 1/3 and 1, for which the dimensionless stream function,f, is tabulated (e.g. Schlichting 1979). 
When the value of f was required at a non-tabulated value of  r/, we used a Taylor expansion 
employing the values off, f ',f" and the corresponding value o f f "  from [38] at the closest tabulated 
value of  r/. All integrals were calculated using Simpson's algorithm and the local temperature was 
computed from [42] with 0{-r/-~ given by [45]. 

To obtain the deposition rates, for given Tw and mainstream conditions, the following steps are 
followed: 

1. Given the molecular transport parameters Pr and Sc;, compute 6T and 6~.,~-0-~ as 
indicated at the end of  section 4.1. 

2. The dimensionless deposition rates without condensation, are calculated by 
solving the algebraic system comprised by [66], for i = 1, 2, [60] and [61]. 

3. It can be shown that when condensation within the BL is not possible, 
l.h.s. < r.h.s, in [85], and the opposite is true when droplets can form. Thus, the 
values obtained in step 2 can be used in [85] to test the possibility of  a two-phase 
region near the wall. 
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4. If 1.h.s. > r.h.s, in [85] the dimensionless deposition rates with condensation are 
calculated using the equations given in section 4.2 as follows: 
(a) Choosing a value of qn, the values of  x~, dxl/dtl, d2xl/dq 2, ~o~, I and dco~,~/dq 

at r/, are calculated from [74], [75], [70], [78] and [71], respectively. 
(b) Equations [70] and [71] are integrated using a fourth-order Runge-Kutta  

method (as in normally done, the system was transformed to a system of three 
first-order ODEs by splitting [70] in two ODEs, using the new variable 
z = dx~/dr/); starting at the chosen value of r/. until the wall (q = 0) is reached. 

(c) Once the wall is reached, [84] is checked. If  it is not satisfied, a new value of 
r/, is chosen and steps 4(a)-(c) repeated until [84] is satisfied to the required 
precision. 

(d) For this value of qn, the deposition rates [83] are calculated. 

5. RESULTS AND DISCUSSION 

For illustrative purposes, we present here some numerical results corresponding to dilute KzS04 
(denoted by subscript 1) and NaeSO 4 (subscript 2), vapors, with the inert "carrier" gas being air 
at atmospheric pressure. Estimated values of the thermodynamic and transport properties are given 
in appendix A. The mainstream temperature is taken as 1700 K and the mass fraction of K 2 S O  4 
at mainstream is fixed at o~v,~;~ = 4 × 10-2Og~vq~{-T~- ). Using the values given in appendix A, this 
corresponds to inv. j:~ ,~ 1.91 x 10 -3. We are mainly interested in the variation of deposition rates 
and BL structure when the amount of the second condensible vapor (Na2SO4) in the mainstream 
is increased. This amount will be indicated by the value of  the ratio Pv.2;~/Pv.I;~ that represents the 
molar concentration of  Na2SO4 with respect to the molar concentration of K2SO4 at mainstream. 

Three different values of the droplet thermophoretic parameter ~t will be considered: ~t = 0.5 
(close to the corresponding theoretical limit for particles in the free-molecular regime); ~ = 0.1 
[which appears (Castillo & Rosner 1988a) to provide a good estimate based on experimentally 
observed deposition rates of Na2SO 4 condensate particles]; and a lower value of ct =0.01 
(which might describe the behavior of  high thermal conductivity condensate particles in the 
near-continuum limit). 

5.1. Deposition on the Wall 

Figures 3-5 depict the deposition rate of K 2 S O  4 for a fixed wall temperature, Tw = 1400 K and 
rn = 0, 1/3 and 1, respectively, as a function of the ratio Pv,2;~/Pv.I;~. For the lower values of 
Pv.zz~/Pv,~:~, condensation within the BL is not possible and the results are obtained as indicated 
in section 4. I. But beyond a threshold value Ofpv.2;~/Pv. J:~c (indicated by a vertical line in the figures) 
BL condensation takes place. If even in this case condensation within the BL is not allowed, the 
deposition rate for this FBL (obtained as described in section 4.1) is given by the dashed line in 
each figure, showing that J~ is a continuously increasing function of the molar concentration of 
the second vapor at mainstream (when the molar concentration of vapor 1 is kept constant). When 
BL condensation takes place and LTE is attained between the condensed droplets and the 
surrounding vapor (section 4.2), there are two contributions to the total deposition rate of 
condensible material, the deposition in vapor form iv. ~ represented in the figures by dotted lines, 
and the deposition in droplets, Jc.~. Adding both contributions we get the total deposition rate 
~-¢~, depicted by the solid lines for the three values of ~ considered. For the three vlaues of m 
considered, it is observed that the qualitative behavior is completely similar. Thus, iv. ~ decreases 
with P~.:;o~/Pv. ~:~ and increases as ~ decreases (this dependence on ~ is the opposite for iv,2 and the 
particular behavior is connected to the change in the deposit composition). On the other hand, the 
contribution Jc.~ decreases as ct decreases because the thermophoretic velocity of the droplets 
diminishes and the droplets are therefore less effective in bringing material to the wall (decreasing 
the value of  Jc). The curves are continuous at the beginning of condensation (except the singular 
case ~ = 0), where Jc. ~ ~ 0. When condensation takes place the diminishing value of j~ with respect 
to the FBL value is very important. [For instance, for m = 1, ~ = 0.1, Pv.z;oo/Pv, koc = 0.2,  it turns 
out that ~t (LTEBL)/J~ (FBL) ,~ 0.57.] For certain values of  • and pv, 2;~/Pv, ~;~, the deposition rate, 
~¢~, can lie even below the value for the case when the second vapor is absent (Pv.2:oc = 0). 
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to the FBL value is even more dramatic [for m = 1, ~ =0 .1 ,  P~.2:~/Pv,]:o~ =0.2 ,  it results 
/2(LTEBL)/J2(FBL) ~ 0.35], leading to a deposit richer in K 2 S O  4 in LTEBL with respect to the 
FBL case [for the conditions indicated above: x~.d~p(FBL)= 0.693 and x~,a~p(LTEBL)= 0.788]. 

In figure 7, the deposition rate of K:SOa is presented for m = 1 and ~ = 0.1, and different wall 
temperatures, Tw. The dashed lines depict FBL values and the solid lines correspond to LTEBL. 
The dotted line represents the locus of BL condensation onset. It is interesting to note that this 
line does not correspond to the line of maximum deposition rate for each surface temperature. The 
behavior is similar to that presented in figure 5. The influence of condensation upon ~¢~ is seen to 
be more important for the lower wall temperatures. 

The values of q. corresponding to figure 7 are plotted in figure 8. At the beginning of  
condensation (dotted line in figure 7), % = 0. With further increases in the amount of the second 
condensible material in the mainstream, or decreases in the wall temperature, T~, the "interface" 
between the single-phase region and the two-phase region (section 4.2) detaches from the wall and 
moves away from it, expanding the two-phase region (section 2.7). 

5.2. Boundary Layer Structure 

As a consequence of the condensation phenomena within the BL, the spatial distribution of  
condensible material changes. As an example, in figure 9 the vapor mass fraction profiles are 
presented for the conditions specified in figure 5 [i.e. m = 1, To: = 1700K, Tw = 1400K, 
Ogv,~; ~ = 4 x 10-2co~q~-T~-)] and Pv.2;~ = 0.2pv,~:~, ~ = 0.1. Again, the dashed lines correspond to 
FBL and solid lines to LTEBL. Of course, in any case both co~, ~ and co~.: tend to their mainstream 
values for large values of r/ (cu~,u~ = 1,913 x 10 -3 and COv,2:o: = 3.119 x 10 -4, respectively). The 
interface between the single-phase (r/> %) and the two-phase (r/< r/,) region is located at 
% .~ 0.933. The profile of COv.~ changes slightly, being appreciably different to this scale, only in 
the vicinity of  the wall. The influence on COy.2 is even more appreciable, extending well beyond 
the position at which condensation begins (r/= %). It is observed that at the wall the slopes of 
co~.~ and co~,: are smaller for an LTEBL than for an FBL, leading to a smaller deposition rate 
(in vapor form) for an LTEBL and also, at the wall, co~. ~(LTEBL)> co~,~(FBL) and therefore, 
as required by the boundary condition [61], (that both LTEBL and FBL must verify), 
co~.2(LTEBL) < o)~.2(FBL), indicating that the deposit, in LTEBL, is relatively richer in component 
1 ( K 2 5 0 4 ) .  

Finally, the distributions of condensible materials (for LTEBL) in vapor and condensed form 
inside the two-phase region (r/< %), are plotted in figure 10 for the same conditions corresponding 
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dimensional (planar) stagnation line collector (m = 1). 
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to figure 5. Both (J~c.i and a&.2 start from a zero value at r /= r/n (they are equal to zero for r />  ~&, 
and their slopes are discontinuous at r /= ~&), and continuously increase up to the wall (r/= 0). In 
the very vicinity of the wall the amount of condensible materials in droplet form is much larger 
than in vapor form. The droplets, driven by thermophoresis, move toward the wall slower than 
the vapor does by Fick diffusion. As a consequence, droplets are not so effective in bringing 
condensible material to the wall, therefore reducing the total deposition rate of both condensible 
materials (with respect to the FBL case in which droplets do not exist and the transport mechanism 
to the wall is exclusively Fick diffusion), as was observed in figures 5 and 6. 

6. CONCLUSIONS--IMPLICATIONS 

Until now, multicomponent vapor deposition rates under conditions in which the mixture "dew 
point" is achieved within the thermal BL, could not be predicted, primarily because of the difficulty 
of predicting the contribution associated with the collection of the newly formed solution 
condensate aerosol. Here we provide a rational yet tractable method for making such predictions 
in the limiting case that vapor/liquid equilibrium is maintained in the two-phase (inner) region of 
the LBL, and the dispersed solution condensate is collected by thermophoresis. Illustrative 
calculations are included for the deposition of sodium sulfate and potassium sulfate from initially 
undersaturated streams of combustion products exposed to actively cooled solid targets represent- 
ing turbine blades (above the binary Na2SO 4 "Jr-K2SO 4 melting point). This system has also been 
studied experimentally in this laboratory (Liang et aL 1988)--indeed these experiments motivated 
and can be understood and extrapolated with the help of the present theoretical developments. 

In the present work we have numerically considered only dilute binary vapor systems under 
conditions such that the mainstream is undersaturated, and equilibrium occurs in the thermal BL 
to form ideal solution droplets. In applying this formalism to systems of current practical 
importance we anticipate that it will be necessary to correct further for the facts that: (a) real alkali 
vapor systems are partially dissociated and interact chemically with species [e.g. H20(g)] normally 
present in the combustion products; and (b) real alkali sulfate solutions are slightly non-ideal, 
thermodynamically. Simple methods for making these necessary "corrections" have recently been 
developed and are presented elsewhere (e.g. Roy et al. 1988; Liang et aL 1988). 
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This deposition rate analysis and its predecessor for undersaturated unary vapor mainstreams 
(Castillo & Rosner 1988a) provide the theoretical background necessary to examine the conse- 
quences of relaxing the simplifying assumption that the dispersed condensate surface area per unit 
volume is large enough to maintain vapor/condensate equilibrium everywhere within the thermal 
BL (Castillo & Rosner 1988b). While non-equilibrium situations will undoubtedly be encountered 
in specific applications, we believe that the simplicity and generality of  the present asymptotic cases, 
and the insights obtained from their investigation, amply justify their quantitiative examination 
here. 

With the help of the abovementioned studies a comprehensive, quantitative picture of  the 
important regimes of  multicomponent vapor and/or particle deposition is beginning to emerge, 
including their interesting mutual interactions within BLs. Since these convective mass transfer 
phenomena appear in so many technologies, this understanding should ultimately pay handsome 
dividends in the form of improved deposition rate predictability and control. 

Acknowledgements--We gratefully acknowledge many helpful discussions with our colleagues J. Fernandez 
de la Mora (ME Dept, Yale University), B. Liang (University of California--Berkeley), R. Nagarajan (IBM, 
San Jose), H. M. Park (Brown University) and S. A. G6ko~lu (NASA-Lewis Research Lab.). We are also 
indebted to the U.S. Government agencies (NASA, DOE-METC and DOE-PETC) whose financial support 
made possible these fundamental studies and their publication. 

This work was supported, in part, by DOE-METC (Contract DE-AC21-85MC22075) and NASA-Lewis 
Research Center (Grants NAG-3-590 and NAG-3-884). 

a ~ 

A =  
b =  
B =  
D =  

f =  
j tr ~ 

¢ =  
m ~ 

m v ,  i ~ 

N =  
n - =  

H i ~ 

p =  

PV, i ~ 

Pr = 
if"= 
r m ~ 

R =  
S ~  

Sci = 
t =  

T =  

Id e 

¥ =  

X = 

X i 

y =  

NOMENCLATURE 
Constant in [31] 
Function defined by [50] 
Constant in [67] 
Function defined by [51] 
Fick diffusion coefficient 
Blasius non-dimensional stream function 
Diffusion mass flux vector 
Non-dimensional mass flux at the wall; see [57] 
Euler parameter defined in [31], m = f l / ( 2 -  fl) 
Molecular weight of vapor i 
Number of condensible vapor species 
Unit normal vector 
Moles of vapor i 
Total pressure 
Vapor pressure of component i 
Prandtl number V/~h of  gas mixture 
Local mass consumption rate of vapor i (per unit volume) 
Molecular mass ratio, Mv,~/Mv,2 
Universal gas constant 
Saturation ratio; [5] 
Schmidt number for vapor i; v/Dv, i 
Time 
Local temperature 
External (potential) flow velocity along x 
Velocity vector (x-component u and y-component  v) 
Distance along the wall measured from the forward stagnation point; figure 2 
Molar fraction of  component i in the liquid phase 
Distance normal to the wall; figure 2 

Greek symbols 

c~ = Normalized thermophoretic coefficient; ~tvDdrop/V 
~h = Thermal diffusivity of gas mixture 
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0 

P 

O)v, i 

O)c, i 

~tX = Thermophoret ic  factor (dimensionless) 
fl = Included angle of  wedge (as multiple of  n); figure 2 
F = Normalized vapor  mass fraction; [64] 

fix = Parameter  defined by [46] 
6i = Function defined by [65] 
q = Similarity variable; [34] 

= Value of r/defined by [67] 
= Dimensionless temperature; [45] 
= Momentum diffusivity (kinematic viscosity) of  the gas mixture 
= Density of  mixture 
= Stream function; [35] 
= Mass fraction of  vapor  i; Pv, i/PG 
= Mass fraction of  condensate component  ; P¢,i/Po 
= Dimensionless vapor  consumption rate; [48] 
= Dummy (integration) variables 

Subscripts 
e = At outer edge of the momentum BL 
c = Condensate phase (droplets) 

dep = Liquid deposit 
diff = Diffusion 

drop = Droplet  
G = Total gas mixture (carrier gas + vapor) 

inert = Inert (cartier) gas 
i, j = Condesible component  i, j 

n = At the "interface" between the two-phase (2~b) and the single-phase (14) regions 
T = Thermophoret ic  
v = Vapor  

w = At the wall (y = 0) 
= At the mainstream (y ~ oo) 

Superscripts 

eq = Equilibrium value over pure liquid i 
2~b, 14) = Refers to a quantity on the "interface" between the two-phase and the single-phase region 

' =  Derivative with respect to q 

Abbreviations 

BC 
BL 

FBL 
I.h.s. 
LTE 

ODE 
PDE 
r.h.s. 

= Boundary condition 
= Boundary layer 
= Frozen (source-free) boundary layer 
= Left-hand side 
= Local thermodynamic equilibrium 
= Ordinary differential equation 
= Partial differential equation 
-- Right-hand side 
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A P P E N D I X  A 

Input Data--Illustrative Case 

All figures presented in this paper correspond to dilute K2SO4 (denoted by subscript 1) and 
Na2SO4 (subscript 2) vapors, with the inert "carrier" gas being air at atmospheric pressure. 
According to assumption A.5 the gas thermodynamic properties are considered constant and equal 
to their values at the mainstream temperature, T~. Thus, we take 

0.353 p -- [g/cm3]. 
T~ 
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The temperature dependence for each P~qi is taken to be of the Clausius-Clapeyron form: 

eq These equations were used in the calculation of COv.,~T-}, [3], with the values 

Mv,~ = 174.26 g/tool and My.2 = 142.05 g/mol. 

From Cutler (1983), 

?t = 26.2 and AI/R=2.925 x 10+K; 

and from Kohl et al. (1975), 

72 =25.05 and A2/R= 3.325 x 104K. 

While these values are assumed in the illustrative calculations of this paper it should be recognized 
that because of dissociation and chemical reactions (e.g. with water vapor) the effective values of 
? and (to a lesser extent) A/R will depend somewhat on combustion conditions (e.g. Kohl et al. 
1975; Roy et al. 1988). The Prandtl number was taken equal to 0.7 (air) and the vapor Schmidt 
numbers, Scj = 2 and Sc2 = 1.8. For these values of Pr and Sc~ the following values of ~T, [46], and 
8i{4)-}, [65], were obtained for the values of the Euler parameter m of principal interest here: 

6 T (Pr = 0.7) 61 (42~(Sc = 2) 62 xq)q(Sc = 1.8) 

m = 0 (flat plate)  3.41669 2.36793 2.45525 
m = 1/3 (axisymm. stag. pt) 2.60279 1.75597 1.82522 
m = 1 (p lanar  stag. pt) 2.01669 1.34459 1.39912 

A P P E N D I X  B 

Solution by Quadratures 
When a two-phase region exists in the vicinity of the wall, the solution of [47] and [49], for r/~< r/., 

can be written in the form 

f f "d f l f ;  ~ "" ~l-m+lsci'fff~:~~d~] dq9 o,+., = S c ,  , T- 
r"° Fm+l fi" ] ,oj, expl-5-sc,, fxce-)d¢ dtp +to~,t; . [B.I] 

and 

f f .  cbi"(-~0-~ e x p l f f  B ~ ¢ - ) d , ] ~  [B.2] 

with o)~"~c~/-~ such that the local equilibrium conditions given by [53] and [54] are fulfilled everywhere 
within the two-phase region. 

We attempted to carry out these integrals numerically using a Simpson algorithm (except for the 
integrals in which the source term tb~" appears, where a simple trapezoidal rule was used and [53] 
and [54] were imposed on the value of e)~" at the end of each integral step). The solution was found 
to be numerically unstable, with oscillations appearing in the values of the different variables within 
the two-phase region. For this reason, the direct Runge-Kutta integration method presented in 
section 4.2 was used instead, yielding a perfectly stable solution. 

A P P E N D I X  C 

Role of Nucleation Kinetics Restrictions 
It is true that for systems free of condensation nuclei, vapor condensation does not take place 

precisely when the value s = 1 is reached, due to the activation barrier associated with the surface 
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free energy of embryonic droplets. The kinetics of homogeneous nucleation in condensing binary 
vapors has been recently analyzed by Studzinski et al. (1984), who present the nucleation rate 
equation (rate of generation of "critical" nuclei) as well as the rate equations governing droplet 
size, composition and temperature. However, when active foreign bodies are present, these provide 
favorable sites for vapor molecules to initiate the new phase. If the number density of foreign 
condensation nuclei is adequate, the vapor condensation will occur in such a way that the value 
s = 1 is approximately maintained. This kind of nucleation is properly called heterogeneous 
nucleation. Except for scrupulously arranged laboratory experiments, heterogeneous nucleation is 
indeed most often observed. The contamination level associated with most combustors is expected 
to allow our assumption A.4 of condensation at local equilibrium to be a useful first approximation. 

Recently, Castillo & Rosner (1988b) have presented an analysis in which assumption A.4 has 
been relaxed for a unary dilute vapor. Accordingly, that analysis can be used to define the range 
of validity of the present approximation in terms of the concentration and size of the mainstream 
particles which will serve as condensation nuclei. 


